

IMX-104 Characterization for DoD Qualification

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

IMX-104 CHARACTERIZATION FOR DoD QUALIFICATION

Sanjeev Singh*, Lauren Jelinek, Philip Samuels, Anthony Di Stasio, Leila Zunino

Explosive Development Branch Energetics & Warheads Research & Development Division RDECOM-ARDEC, Picatinny Arsenal, NJ

2010 Insensitive Munitions & Energetic Materials Technology Symposium Munich, Germany October 11-14, 2010

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.²

Acknowledgement
 Background
 IMX-104 Qualification
 Summary

ACKNOWLEDGEMENT

PM Combat Ammunition Systems

- ➢ Mr. Charlie Patel
- Mr. James Rutkowski

BAE Holston

- Mr. Brian Alexander
- Mr. Virgil Fung
- Mr. Michael Irvin
- Ms. Denise Painter

>RDECOM-ARDEC

- ➢Mr. Joseph Christiano
- ≻Mr. Theodore Dolch
- ➢Mr. Timothy Friedhoff
- ➢Dr. Brian Fuchs
- ➢Mr. Henry Grau
- ➢Mr. James Grabkowski
- ≻Ms. Neha Mehta
- ≻Mr. Garrett Rector
- ➢Mr. Garrett Richards

Financial Support

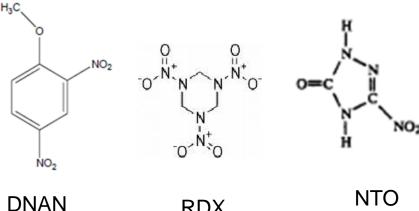
- ➢PM Combat Ammunition Systems (PM-CAS)
- ➢ PEO Ammunition
- ➢Office of the Secretary of Defense (OSD)
- ➢ Joint Insensitive Munitions Technology Program (JIMTP)

BACKGROUND

PM CAS initiated Common Low-cost Insensitive Munitions Explosive Program

- > Affordable TNT and Comp B Replacement for near term insertion
 - ➢ Goal 1 Select one common candidate to replace both
 - Goal 2 Select one candidate for TNT and one for Comp B energy levels

> Results

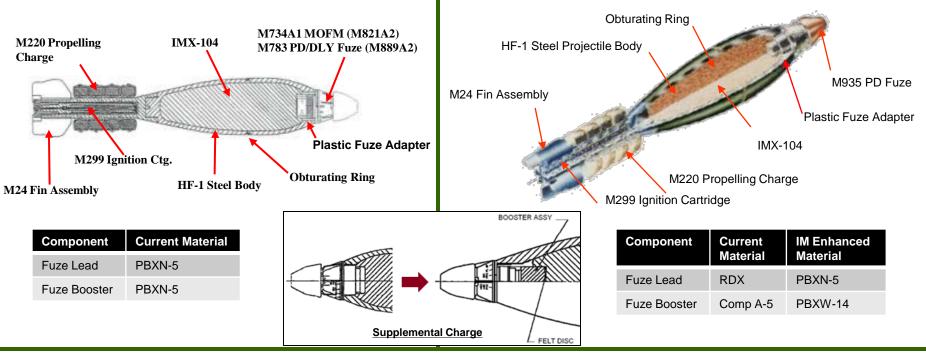

- IMX-101 qualified as TNT replacement
- IMX-104 selected as Comp B replacement
- > Overall Program Objectives
 - Provide an insensitive replacement for Comp B with equivalent performance
 - Provide characterization data to support the qualification of IMX-104 for full use in Army and USMC ammunition
 - Accelerate Implementation of IM Solution in 81mm & 60mm Mortars

- **IMX-104** Formulation
 - 2,4-Dinitroanisole (DNAN)
 - 3-Nitro-1,2,4-triazol-5-one (NTO)

RDX \succ

RDX

- Formulated from available ingredients >
- Detonation energy equivalent to Comp B \geq
- Low hazard sensitivity \geq
- Melt Pour processing similar to Comp B \triangleright
 - 95,600 lbs produced at Holston AAP
 - Batch size = 545 kg (1200 lb)

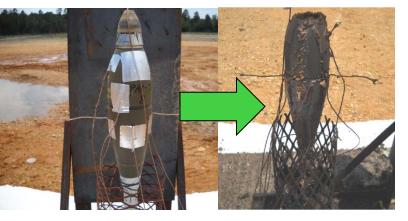


81mm IM MORTAR

<u>Item Nomenclature</u> Cartridge, 81mm: HE, M889A2/M821A2 (IM Enhanced)

Item Nomenclature Cartridge, 81mm: HE, M889A1 (IM Enhanced)

- Changes to be implemented on all 81mm HE cartridges
 - Main fill replacement
 - Fuze venting technology plastic fuze adapter
 - > Supplemental charge to reliably initiate the more insensitive main fill.
- > Additional changes to the M889A1 incorporate IM-compliant fuze energetics.


ENGINEERING IM TEST RESULTS

Bullet Impact

Slow Cook Off

Fast Cook Off

IM TEST:	FCO	SCO	B	I	F	Ι	SD	SCJI
Passing Criteria	V	V		V	7	7	III	III
81mm (Comp-B)	(II)*	(II)*	(II	I)*	(II)	[)*	(I)*	(I)*
81mm (IMX-104)	V	V	IV	V	III	IV	III	Ι
()* Assessment - not tested		6° F/hr	0.50 cal	7.62 mm	8300 ft/s	6000 ft/s		

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.⁸

IMX-104 QUALIFICATION

DoD Energetic Materials Qualification Process

Test Protocol:

(1) Allied Ordnance Publication Seven (AOP-7) (Edition 2 Rev. 3), "Manual of Data Requirements and Tests for the Qualification of Explosive Materials for Military Use", December 2007.

(2) Standardization Agreement (STANAG) 4170 (Edition 3), "Principles and Methodology for the Qualification of Explosive Materials for Military Use", 2007.

(3) DoD Energetics Qualification Program Matrix for Main Charge Explosives

Comprehensive assessment of the Energetic Material

- Safe and Suitable for the intended use
- Test Protocols Coordinated with NOSSA

Assessment Includes

- Small Scale Impact, Friction, ESD
- Cap Sensitivity
- Vacuum Thermal Stability (VTS)
- Differential Scanning Calorimetry (DSC)
- Small Scale Burn Test
- Variable Confinement Cook-off Test
- One Liter Cook-Off Test

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED."

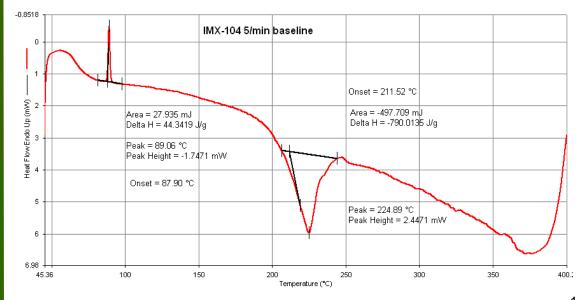
	ERL / Bruceton Impact	BOE Impact	BAM Friction	ABL Friction	Small Scale ESD	Cap Sensitivity Test
Test Data	50% Impact Height (cm)	10 trials at 4 in. drop height	10 TIL (N)	20 TIL (N)	0.25 Joules	#8 Blasting Cap
IMX-104	114.4	No Go	160	4450	No Go	No Go
Comp B	33.9	Go	168	8000	No Go	Go
RDX	18	Go	168	1870	No Go	Go

Hazard Sensitivity Tests

Limit: Not More Sensitive than Comp B

>IMX-104 shows less sensitivity to Impact, Friction, ESD, and Shock

THERMAL STABILITY



	Vacuum Thermal Stability (VTS)
Test Data	ml/g of gas evolved at 100°C
IMX-104	0.571
RDX	0.12
Comp B	0.602

≻ VTS

 ≻ Limit: ≤ 2 ml/g of gas evolved
 > IMX-104 well under this limit

	Differential Scanning Calorimetry (DSC)			
Test Data	Endotherm	Exotherm Onset	Exotherm Peak	
IMX-104	89°C	212ºC	224.89°C	
RDX	205°C	210°C	241°C	
Comp B	75°C	202.14°C	228.66°C	

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.¹¹

EXPLOSIVE RESPONSE WHEN IGNITED

Small Scale Burn Test

2 10g trials
2 100g trials
All tests result in NO GO

Variable Confinement Cook-off Test (VCCT) Slow Cook-off Results

	Steel Confinement (in)	Reaction	
IMX-104	0.075	Deflagration	
IMX-104	0.090	Deflagration	
IMX-104	0.105	Deflagration	
IMX-104	0.120	Pressure Rupture	
Comp B	0.015	Explosion	
Comp B	0.030	Explosion	
Comp B	0.090	Explosion	
Comp B	0.120	Detonation	
Comp A5 (98.5% RDX)	0.015	Partial Detonation	

Variable Confinement Cook-off Test (VCCT) Fast Cook-off Results

	Steel Confinement (in)	Reaction	
IMX-104	0.075	Pressure Rupture	
IMX-104	0.090	Pressure Rupture	
IMX-104	0.105	Deflagration	
IMX-104	0.120	Pressure Rupture	
Comp A5 (98.5% RDX)	0.015	Detonation	

VCCT
 FCO = ~10°C / sec
 SCO = 3.3°C / hr
 Pass = Burn to deflagration transition
 All VCCTs result in passing reaction

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.¹²

CRITICAL TEMPERATURE

>One Liter Cook-off Test

Non-catastrophic self heating >142°C - 144°C

Catastrophic self heating or
 Critical Temperature
 Tc = 161°C - 163°C

Acceptable processing Safety margin

> IMX-104 Characterization shows promising results

- Hazard sensitivity test results demonstrate IMX-104 is less sensitive than Comp B
- Thermal testing shows improved response to cook-off compared to Comp B
- Critical temperature assessment indicates that IMX-104 is safe to process under typical melt pour operations
- Aging study results to be finalized this coming fall
- Formal IM testing scheduled for January 2011